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ABSTRACT
This paper considers

a finite frequency interval by feedback.

WPTE W

the problem of reducing the
possibly infinite dimensional linear single—input single—output system over
Specifically the following are
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proven: (i) if one wants to bound the overall sensitivity, the existence
",\' of a nontrivial inner part inhibits the reduction of the semsitivity over
-j the interval: (ii) in a system that is continuous and has at most countably
:: many zeros on the imaginary axis, ome can reduce the sensitivity over the
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I. INTRODUCTION

This paper considers the problem of reducing the sensitivity of a
linear single-input single-output system over a finite frequency interval by

feedback.

;55 Fig. 1
' The feedback system is described by Fig. 1. P is a given system and we
assume PeH® (i.e., stable) and C is a feedback. We say that the feedback
stabilizes the system if the transfer functions from (vl.vz) to (ul,uz) all
Selong to H”.

The closed loop sensitivity S is the transfer function from vy to Uy
and is given by

1

S(s) = (1+P(s)C(s)) (1.1)

1]

The problem of sensitivity reduction over a frequency band X is stated
as follows. Let x be *“he characteristic function of a given bounded set

XC(-=», =), on the imaginary axis, i.e.,
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1 if weX,

x(ju) = (1.2)
0 otherwise

For given €20 and M>1, find a stabilizing feedback for which the

sensitivity satisfies

Hxsll, < e |Is]], ¢ M. (1.3)

Here are our main results.
Theorem 1.
Suppose PeH” has a nontrivial inner part and x is the characteristic

function of a subset of the imaginary axis which has positive measure. Then

inf ||xs]]e > 0,
[[s]]oc

where M>1 and the infimum is taken over all stabilizing compensators.
Theorem 2.

Suppose PeH” is continuous and has at most countably many zeros on the
imaginary axis. Let x be the characterization function of a compact set

X(C(-=,=) on the imaginary axis. Then for any 1>e>0 and any M)>1 there exist

a stabilizing compensator such that
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§'ﬂ Previous discussions of this problem appear in (1] - [5]. In [1], it
“ ) was shown that if the plant P is analytic, is bounded, has no zero in Re
i‘l sZO, and satisfies an attenuation condition at s=«, then for any €>0 and M>1
‘:' . the problem has a solution. Especially the problem is solvable when P is of
‘\.:' minimum phase. Theorem 2 generalizes this result, and seems to illuminate
} more on the structural aspects of the sensitivity reduction problem. 1In
:’:\ [3], in the framework of rational plants, it was shown that if the plant P
”; has a right half plane zero then there exists a positive number k such that
b2
Hxs]l, 2 [Is]E .
[
\ Hence given M>1, there is >0 such that the problem has no solution.
“':“ Theorem 1 is a natural extension of this statement. In [5], it was shown
'i.‘ that if the plant is analytic and has no zero in some region containing Re
:: sZO, and satisfies some intricate condition near s==, then for any >0 and
M>2+L (L is determined by the condition) the problem has a solution.
“ However the condition seems rather difficult to check. The difficulty was
;i} demonstrated by the authors’ wrong conclusion that for P(s) = e S/(s+1)

| (which has a nontrivial inner part), and some M)>2, the problem has a

o solution for any €>0.
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ﬂﬁ II. PRELIMINARIES AND NOTATIONS

2.1 Parametrization of Stabilizing Feedbacks

We parametrize feedbacks achieving stability. The parametrization was

¢H introduced in [6] and modified in [7]. The following is a corollary of [8]
i ¥

20

Bty for a stable system.

:L,‘ Proposition 3:

& .

:“§ Assume P is stable (PeH”). Then a feedback C stabilizes the system if

and only if there exists heH™, Ph#1 such that

- C = T8 ° (2.1)
5\ Substituting (2.1) to (1.1), we have

S = 1-Ph. (2.2)
' Therefore our problem is reduced to that of finding heH™ satisfying

D) [|x(2-Po) ||_ < e, [|]i-Pr]]_ <M (2.3)

v for given ¢>0, M>1,

A 2.2 HP Functions

0 H2 and H® are the Handy spaces of analytic functions on the right half

K.
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plane with L2 and L® boundary values, respectively. [9], [10] are good

sources on HP spaces, inner-outer factorizations, etec. The following is
from [10] and is worthy of note.

Proposition 4 [10].

Assume PeH® and let K = H2epHZ (or K = (PHZ)T

). Then K = {0} if and
only if P is outer.

2.3 o-Inner Product and o—-Norm

The Laplace transformation L defines an isometric isomrophism from
L2[0.°) to H®. We shall use both the time domain and the frequency domain
in our analysis.

We denote the wusual inner product and norm of 52 (respectively,
L2[0,=)) by <*,*> and []]]. For future use we introduce also a whole
family of additional inner products and norms as follows. Given ¢>0, and £,

geHz, define the o-inner product and the o—norm by

t,>_ (zn>'lf £(o+350)E (oFja)dw (2.4)

_ 1/2
[ell, = <605 (2.5)
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Since L is an isometry, there hold

1]

F,g) J'L"l(f)(t)L’l(g)(t)e'z"tdt (2.6)
¢ 0

Hell, = ¢ e P52 (2.7)
0

1f L71(f) and L‘l(g) are supported within the compact interval [0,T],

given some T>0, then

Il < jlell, £ el (2.8)

and
ke8> - <.e>_| & -2 (||e]| + |[e]? (2.9)

For xeL2[0,°), define Xp € Lz[o,w) to be the truncation of x at time T, T>0,

i.e.

x(t) t£T

xT(t) = (2.10)
0 otherwise

For f=L(x), we denote fT = L(xT). Notice that Xy —x and :T =2f as T 2e,

in the usual topology of L2[0,=) and HZ.
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¥ III. PROOFS OF THEOREMS 1 AND 2.
[)
oW
R In proving Theorem 1 we use the following observations.
Lemma 5,
\-.‘( ©
N Let {g,}C H” be a sequence such that ||gn“¢, { M. Let x be the
/.
1ﬁ)' characteristic function of a set X C [-=, =] of positive measure on the
:‘ imaginary axis. Suppose ||xg,||. =0 as n - e. Then for any compact set Y
§ .
;ES in the open right half plane, |g (s)| =0, uniformly for seY.
Ny
o
[ Proof: It seems convenient to establish the lemma in the dise, For geH",
K> £rool
Vadel]
i“ define
l“n"
! 1+z
N = g(—=
:5 SD(Z) g(l_z) (3.1)
R ::‘_
N

Then gpeH (D) and [|g||, = |]ep||o» where D is the unit disc on the complex

{IA

plane. Let Yy = {z|(1+z)/(1-2z)e¥}, and Xp = {z|(1+2)/(1-2)ejX} be the

o
AR
e §

inverse image of Y and X by the Mobius transformation respectively, and Xp

I g
a

 A%%

be the characteristic function of XD. Since Y is a compact set in the open

(o
2

o

right half plane, Y, C B(0,r) (= the closed disc of radius r) for some
D

5y
yAs

0<r<1. By Jensen’'s inequality, we have

. ‘ .'J

L
.

7 ie
1 ie e +z
log lgD(z)l S-E;-jr log]gD(e ) |Rel 15 1de. (3.2)
-1 e -z

-
—t sty

o4 '_'v‘:'v %
vt

2
r'

Note that for zeYp and 6 ¢ [-n,n]
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(3.3)

Using the inequalities (3.3), for stD we can find a uniform upper

bound for the right hand side of (3.2).

loglgD(z)]

1. 1+r + 1-p + i0. -1
st Jinlog IgD(e )lde - I _nlog g, (e™) | "a8]

1 1+r J“ lg, () Jae - f 1og* g e 18) 1146
*p
T el ~ 5 157 2087 b | 2wy -0
where
log™x = logimax(1,x)} 2 0, (3.5)

and pn is the Lebesgue measure on the unit circle.
Let {gnD} be the sequence in H (D) obtained from (gn] by the

transformation (3.1). Note that

[legplle <M. and  [lxpg ]|, =0, as n »e. (3.6)

Applying (3.4) to the sequence {gnD], we see that the right hand side of




o‘l‘q \ R 10

&
)
s:q (3.4) tends to —= uniformly for ze¥p. Hence |gn(s)| — 0 uniformly for seY.

M T QaE.D-
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Plld oo
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~ R l.lf,_‘i"‘

Corollary 6. Let {g,} be as in Lemma 5, feB? and o>0. Then ”gnf”a -0 as

- >

-
P>

n )<,

Proof. Fix e>0. Since feH%, there exists Q)0 such that

s a7

-
»

|£ Co+g0) [2du < (3.7)
Q 2M

l' .
[N

wl)

¥
»

Py
L 4

.,v
A

This implies that

PR
s
"%/r
s a4 o

.-. _-. P

lg f(c+jm)|2dw << : (3.8)
0 n 2

’

t] & ¥,
~~

[

A

S

|
—

wl)

S
Pd

y 3

for all n, since ||g,[]. < M.

PE X AR
;'}-'

Ry %y
<+

e &

Applying Lemma 5 to the sequence {g,} C K~ and Y = {s|s=o+ju, |o|i0},

C

and Lebesgue's dominant convergence theorcm, we see that

G

b
&“

o (2n)"1j lgnf(c+jw)l2dw =0 as n 9= (3.9)
it <o

o<
A Thus for n large enough,

od

> el = @™ [ jg ressm |? < e (3.10)
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E%:E This implies that ||g,f||, 90 as n ==, Q.E.D.
& '}.
[ Claim 7. Let (g} CH”, ||g,|]l. < M 2nd £ ¢ H2. Then for each A>0, there
SN
o exist some T>0 and o>0 such that |<f,g f> - (fp,g f> | < A for all n.

x:u

o Proof

. —_—
o

[<f.g > = <fn, g £

;;i = <oy, g 0]
<le-eal] Hegel]
f$5
A $legHalte=eo 01 [He]]
(.
o i
o o fle-sgl] o] (5.1
2
WY
e Utilizing (2.9), we also have
i
[ [<fr.e,0> = <c.g 0|
J
I = [<f, (g £).> - £, (g 0> |
s 7' ‘Eptlr T Eptlr’s
<5
)

33

4

ﬁf.y
A

(-2 ]| + []](e 0| 37 |

Ko % o 4
1A

"l{l{l(l'l

-2¢T
a-e2 D] 2[] 4 [le el |12

*»

G 4,1,
AL A
[P

(1402 (1-e72°T) |2 |2 (3.12)
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Recall that fy —f as T -=., Choose T sufficiently large so that ||f-fr|] ¢
A/2M||£]}.  Then choose o sufficiently small so that (1-e729T) ¢
A/2(1402||e||>.  Comdbining  (3.11) and  (3.12), we have the
desired inequality. Q.E.D.
For ease of reference, we repeat our results again.
Theorem 1.
Suppose PegH” has a nontrivial inner part and x is the characteristic

function of a subset of the imagainary axis which has positive measure.

Then

inf [xs]], > o, (3.13)

where M>1 and the infimum is taken over all stabilizing compensators.

Proof of Theorem 1.

On the contrary, assume that there exists a sequence {Sn} of

sensitivity functioms, S, = 1-Ph,, h eE” with ||S_||.™, [[xS,||. = 0 as

n—oe,

Set K = H26PH?. The subspace K is nontrvial (K#{0}), by Proposition 4,

NS
BV M)

Pl
Yy
N

a since P has a nontrivial inner part. For any fe¢K and any gst, we have
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)
' —
o (f,Sng> £, Phn)g) (3.14)

-
» 1
1A K

#

(<£,2> = <f,Phng>

PR
[ R
) I

e

= (f;8>1

e

£ 2 ﬂ

e e
i

A

3
n
o

in particular, for feK, f#0,

re

2
g,8 > = []£]|7 > o. (3.15)

Pl
JL’A_?‘-"‘J 4,

Hence in view of Claim 7, there exist T>0, ¢>0, and &6>0 such that

Kf., S > > 6 (3.16)
T n o

.- for all n.

. On the other hand, by corcllary 6

2 [<eps o> | S feg]l s e]l, 20 as n 5= (3.17)

which is a contradiction. Q.E.D.
Bl Theorem 2.

I Suppose Pek” is continuous and has at most countably many zeros on the
. imaginary axis. Let x be the characterization function of a compact set jX;
XC (-=,») on the imaginary axis. Then for any 1>e>0 and any M>1 there

e exists a stabilizing compensator such that
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j

R

0

K

I3

B ||xs]], < e, Is}]. <M (3.18)
:-:E‘_ if and only if P is outer and has no zeros on jX.

e

Proof: (Necessity) If P is not outer, then the conclusion follows from
<)

... Theorem 1., Let P have a zero on X. Suppose then that there exists hegE”
) :’

:»j such that

h ::n‘

M

[|x(1-Pn) || < e, [|1-Pn|]_ <M (3.19)

e
B L

SIS

'\:_:

:-:- Fix >0, Because P is continuous on the imaginary axis,

b 4

RIXO o] [P | < 8]fn][T111 > 0, i.e., nIXN{o] [P(jw)h(Iw)| ¢ 811 > 0
. . where u 1is the Lebesgue measure on the imaginary axis. Since & was
'-'f,.:: arbitrary ||x(1-Ph)||, 2 1, a contradiction.

':_ (Sufficiency). The proof is by construction of heH™ such that

o

J

N ||x(1-Pr) || < e, |]1-Ph||_ <M (3.20)
)

6 for given 0<e<1, M>1.
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Af Let
SN U = {u:u== or P(Ju) = 0}. (3.21)

W*\ From the assumption U is at most countable and UMX = ¢, Let U = [un,
n=1,2,...} be an enumeration of U,

L) Define r'n‘a by

[ a(s-jun) 2—(n+1)
u_ ¥ o (3.22)

-" -3
o [a(s Jun) + 1

d

N a ]2—(n+1) Yy ome
o |§+a n

where 2>0 is a parameter to be fixed 1later, and the branch of the

YY)
NSy

LA

A

2—(n+1)th complex root is decided in such a way that the positive real line

Pt
Pl
')
LIV TR I }

is mapped by r

LR

n,a into itself. Eq. (3.22) defines a analytic function on

a
P

L

Ay
1 a4

the open right half plane, since the function a(s-ju,)/la(s-ju,)+1] (or

o me A -

a/(s+a)) maps the open right half plane into itself., Furthermore, the

sl

>
<
Py

A

o

are easily proved: (i) r

following properties of rn e H

’ “rn,a”w =

1; (ii) r, 5 is outer; (iii) r, 5 is continuous on the imaginary axis
? »

a

Ol
>

n,a

5

X

including =; (iv) ry (up) = 0; (v) |[|x(1-ry ||, 20 as a 5= (note that

.‘3.

XU =¢); and (vi) |arg rn,a(S)l $x27(8*2) | for any s ¢ {Res 2 0} U{=).

LA

P
s %

Y
s
L

Given >0 (from (3.17)), we choose n>0 such that Ilog z| < n, zeC,
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jkq implies
. Iz—ll { e (3.23)

- We choose the parameter a, according to the property (v), in such a way

that

LL ||x log ro allm < —{} (3.24)
’ 2

is satisfied. For brevity we denote r_ instead of r henceforth.

n n,a’

-
;5;5&

[
v

The properties (iii) and (iv) imply that there exists a neighborhood LIS

- rad

of u, in the one point compactification of R such that ¥,MX = ¢ and

Dy MR AR

-

[rn(Gw) | < M-1, we¥W . (Note that a neighborhood of = is {w| |u[>Q@) for some
0>0.) U is compact since it is a closed subset of a compact set, and hence

,}- the cover U C U:=1Wn has a finite subcover, say UZW = Upnen¥pne where N is a

[~ finite index set.

Since P and r, are outer
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P(s) = A exp[%j loglP(jm)l-:)%%ld—“’z] (3.25)

and

]

r (s)
n

A expf— f 1og|r (Ju) | “i;g du } (3.26)

for a,A e C, Ja] = |a | =

"
.

Given 6>0, let

D, = L] PG| £ 8)

(3.27)
and, defire hg (s) by
B (s) =ZI_£Ix‘exp[—f[C () 12553 d“’} (3.28)
where
gO meD6
Cs(w) = (3.29)
lC(w) weD6
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Clw) = log [P(jw)| = ) log |r_(Ju)]

neN

The proof will be completed if we show that hseh‘m ard that for

sufficiently small &>0 this function satisfies (3.,19), Indeed,
uniformly bounded since log |P(jw)| and log|r,| are bounded in CDB
corrlement of DS)' Hence hé e BT

In verifying (3.19) we use the following egqualities,

. s+ d
Phg(s) =n I } lr (Ju,)}_“:_.]% w
neN neN m

I () ws+j de }
m+JS
+w

= Hr (s) exp[—J‘ Clw) :i;i dwz] (3.31)

neN ) 1+e
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I—Il“ (Jm)l wsD5

nel

lP(jw)I wgl

which follow from (3.25), (3.29) and (3.30).

Note now that if weW ther |r_(jw)| ¢ M-1 for some :index reN,
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|rp(3w)| £ 1, for all neN. So for 8<M-1 there holds

( M-1 weW
[Ph (Gu) | =
1 wEew

Consequently, for weW

[1-Pr (Cw) | £1 + M-1 = M

o - - vy [ - S 3 7
from tre property (vi) of Thus from Claimr 8 below,

1

5. (3.34) and (3,37) imply ||1—Ph6[|x W

9

inhally we concide
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, we first observe th

(3.33)
(3.34)
) (3.35)

fer sufficiently

(3.36)

(3.37)




Ilog I_]}n(jw)l £ } Ilog rn(Jw)I

neN

3
"
~
N
‘.'
b - no_
N €Y -
2
neN
) ‘ n"
-'.:-
N
-

(3.38)

-3
e
N1 8
|5
]
=

“~
RS
ik S
s ty (3.24), From Claim 8 below it follows that for sufficiently small &, we
-~
<
nave
.-
ié TN ?hé(jw) < n (3.39)
::
G foroweX. o Thus Egs. (3.23), and, (3.39) imply ||x(1-Phg)||, < e, eas
Y
!-'.\ .
- reguired.
o C.E.T.
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Sivern tnet & 18 indeed small, we have (froc (3.32))
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o |Phg (Gu) | = ] Jlr (Jw)| for w e "W . (3.40)
L neN
-"'
ot
':'_:' Hence it rexzains to check that
."‘..
)
-
i ; arg Phé(jw) —)argl Irn(jw) as &§ -0 (3.41)
_' . neN
.
.l"
0. %l
in L¥(°W).
LtV
L From (3.30), it suffices to show that
.
N
_[ Clw) 2221 G0 50 as & 50 (3.42)
oy Dy 1+w
Y
Y
YIRS
v uniforely for 6 in Cw.
Since I:8 lies strictly within the interior of W, the kernel
:‘-:' (w8+1)/(w—8) is uniformly bounded over the domain weDg and 0eCwW. Setting
'\'
:"\- " 1 3
N dplw) = dw/(w®+1), we know that log IP(')I and C(°*) belong to L*(du). By
J
" the first fact it is necessary that “(Ds) —0 as & - 0. Consequently, the
-".
)
second ipplies (3.4.). This proves the claim. Q.E.D.
.
.
"'-', Rermark. (i) Notice that we did not require continuity of P(jw) at
p w = e, In fact, the assumptions on the continuity of P(jw) and the
-_::T compactness of the subset X, can be relaxed in various ways without
.-: regulrng considerable changes in the analysis. The current setup was
®:
g cncsen fer simplicity.
R
- (i) & majer part of the proof c¢f Theorer 2 1is dedicated to the
’-':
. zonctiructicn of the ®roll-off” functions r_, which are needed when 2 2 M >
o
',
B
1.4
\'
1)
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., 1. For M>2, the assumptions can be further relaxed; e.g., 1if P(Jw) 1is

continuous, to the requirement that P be outer and have no zeros in X.
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